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ABSTRACT
This article describes a mathematical framework for characterizing
cooperativity in complex systems subject to evolutionary pressures.
This framework uses three foundational components that constitute
a meta-formalism that can be utilized in a host of research and de-
velopment settings to improve the management, control, and under-
standing of large numbers of interacting systems such as in com-
munication, computer, and sensor networks. A new concept, Scale
Invariant Pareto Optimality, provides a mathematical basis for the
efficient tradeoffs of efficiency on many scales and the measurement
of cooperativity in complex systems. A mathematically oriented
definition of self-organized behavior is also described. Discussion
and conjectures are offered.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learning, Con-
nectionism and neural nets and; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Coherence and coordination

General Terms
Algorithms, Design, Economics, Experimentation, Management,
Measurement, Performance, Theory.

Keywords
Complex Systems, Self-Organization, Self-Organized Criticality,
Multi-objective Optimization, Pareto Optima, Swarm Intelligence

1. INTRODUCTION
The ubiquity of computers and other forms of advanced technol-

ogy have created a number of difficult problems. Many are of a
practical nature relating to the management of large ensembles of
interacting systems. To be effective, these systems must work to-
gether harmoniously, i.e., cooperatively. Unfortunately, their har-
monious operation become increasingly difficult to achieve and
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maintain as their size and numbers increase. Indeed, there is a
growing consensus among experts that current approaches for man-
aging these large systems will be insufficient to handle their in-
creased complexity. For example, today’s communications net-
works have become enormously complex systems—for the past
three decades, this growth has approximately doubled every 18
months according to Moore’s Law [14, p.32]. These new technolo-
gies, configurations, protocols, network and computer architectures
and so forth are constantly and relentlessly challenging our abilities
to effectively manage them.

In addition to these practical issues and difficulties are problems
of a more theoretical nature—problems stemming from an incom-
plete, or incoherent understanding of fundamental phenomena. The
complete understanding of complex systems still lies well beyond
our grasp, yet our growing dependence on them impels us to con-
tinue to explore ideas and increase our understanding.

Many different approaches for studying the behavior of complex
systems have been described. One approach is based on Swarm
Intelligence (SI) and represents the view that it is possible to control
and manage large, complex systems of interacting entities with only
“minimal”, or stigmergic communications channels, where only a
relatively small amount of information is communicated [9].

In recent years, new insights have been obtained based on obser-
vations of social insects [6]. Ant colonies and beehives, e.g., seem
to conduct their affairs in a very organized and purposeful way that
enhances their collective survival. Needless to say, these insects do
not have very large brains and their capability to communicate com-
plex information for planning and resource allocation seem very
limited. Yet, their collective behavior has often been characterized
using the terms “intelligent”, “emergent”, and “self-organized” [6].
Their behaviors are also reminiscent of those observed in other do-
mains of inquiry such as cellular automata (CA) [17, 18] which
have perplexed scientists for many years.

A major problem confronting scientists working in these areas is
that no widely agreed upon definition of SI or self-organized behav-
ior (SOB) exists. How could or should these terms be mathemati-
cally defined or characterized? This difficulty is often reflected by
the many descriptions of SI and SOB that are couched in terms of
“self-organization”. Such circular definitions obscure what is really
going on and how complex systems can be more simply character-
ized. Moreover, the absence of precise definitions and therefore,
theoretical foundations, itself creates problems caused by many dis-
parate concepts. Yet, progress is continually being made (see e.g.,
[5, 4, 12]). Nevertheless, it seems useful to provide some new ideas
in the hopes of contributing to a greater synthesis.

This article provides some new perspectives for describing fun-
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damental properties by employing concepts of efficiency, and adap-
tivity, in a simple, general, and hopefully compelling way that pro-
vides a foundation for further experimentation and study. A set
of three foundational frameworks, described in [9], are used to
develop a mathematically oriented meta–formalism that provides
guidelines for conducting experiments. Actual experiments are the
subject of future research.

One feature of this approach is that it gives us tools to mathe-
matically characterize and model the concept of cooperativity us-
ing mathematically based descriptions of adaptivity and efficiency.
These in turn are described using new results from multi-objective
optimization problems (MOPs) and theory. These results show how
a Pareto optimal frontier, i.e., the set of efficient solutions in an
MOP, or indeed any set of non-dominated points in objective func-
tion space, can be quantified by a single scalar value (see [10, 24]).
This provides an alternative, and we believe more general, method
for ranking the desirability of a set of solutions (but see [23] for a
discussion on the limitations of unary measures). The measure of
this set is a Lebesgue measure and entails an entire regime of effi-
cient solutions involving various tradeoffs, hence involving adapta-
tion. In short, this Lebesgue measure quantifies efficiency (in some
sense) in a more general way that also encompasses adaptivity.

This article further develops this notion of efficiency and adap-
tivity to mathematically characterize a novel use of this Lebesgue
measure: measuring the efficient tradeoffs of efficiency or, to put
it another way, obtaining a Lebesgue measure of an MOP where
each objective function is itself a Lebesgue measure that measures
efficiency in some underlying MOP on other scales—the individ-
ual and community scales. These scales define a high-level trade-
off curve corresponding to self-interest and community interest that
can also be quantified using a Lebesgue measure. This high-level
Lebesgue measure thus quantifies entire regimes of operating char-
acteristics on both the individual (sub-system) and community (sys-
tem) levels, hence provides a scalar quantity that, in effect, mea-
sures cooperativity in a homogeneous system of entities. Finite-
state machine (FSM) models in a CA are used as a general model
substrate along with a genetic algorithm paradigm where the fit-
ness function is based on this high-level Lebesgue measure. This
approach allows us to mathematically and computationally charac-
terize the evolution of cooperation.

This article is organized as follows: Section 2 provides more
detail on the current research environment regarding SI and SOB.
Section 3 describes the meta–formalism that provides a basis for
further research of evolving cooperative and self-organized sys-
tems of systems. Section 4 describes how the meta–formalism can
be used to model the components of these systems and articulates
some system requirements in an abstract and general way. Sec-
tion 5 describes possible implementation schemes for a CA com-
posed of FSMs. Section 6 presents some discussion and conjec-
tures about how this meta–formalism could address issues involv-
ing concepts such as self-organized criticality (SOC) and related
phenomena. Finally, Section 7 provides concluding remarks.

2. BACKGROUND

2.1 Swarm Intelligence
Observations of social insects such as ants and ant colonies pro-

vide a great deal of insight into their behavior and SI in general.
These insect colonies have several ways of solving different but re-
lated problems. The main mechanism for solving them is through
the use of chemical substances known as pheromones which have
a scent that decays over time through the process of evaporation
[6, p. 26]. These pheromones form the basis of what amounts to

a clever, and apparently simple, communications and information
storage and retrieval system. Because pheromone intensity decays
over time, it also provides a very simple information processing
mechanism that can implement forms of positive and negative feed-
back [6, pp. 9-10, 41] and reinforcement learning mechanisms [6,
p.96].

Many optimization algorithms and heuristics have imaginatively
captured aspects of SI. Indeed, many difficult optimization prob-
lems have been solved by ant algorithms (see [6] for a large num-
ber of examples and citations). These algorithms generally use
some analogue of pheromone or stigmergic signalling mechanism
or reinforcement learning mechanism to increase the probabilities
of using certain routes in a routing algorithm. In these attempts to
implement SI, however, researchers are often forced to creatively
sidestep what SOB is.

2.2 What Exactly is “Self-Organization”?
Perhaps the most vexing issue in complex systems is: How do

we identify SOB when we see it? Certainly the term seems useful
and descriptive in association with social insects that have brains.
They do, after all, organize themselves. But the term is also used
in many contexts and in association with other concepts that ulti-
mately make its meaning less clear. Indeed, entire books on the
subject have been written suggesting this is not a trivial question
(see e.g., [12]). Moreover, many phenomena can be described as
forms of SOB. Solow [21] describes a mathematical model of func-
tion specialization in economic systems that can be considered a
form of SOB. SOB is often associated with SI, stigmergy, reinforce-
ment learning, and in many other descriptions of complex systems
behavior [9, 8, 15]. Bonabeau et al. [6, p.9-11] highlights four im-
portant elements all relating to how large numbers of simple entities
interact. In his view, SI involves: 1) forms of positive feedback; 2)
forms of negative feedback; 3) the amplification of fluctuations that
give rise to structures; and 4) multiple interactions of multiple enti-
ties. Although this is a significant step towards characterizing some
mathematical attributes of SOB, it is not sufficient to fully define it.
These attributes do not fully explain how the elements of systems
exhibiting SOB actually lead to SOB. For instance, why or how did
pheromones evolve the way they did? Why do they have certain
evaporative properties? How do these properties lead to SOB? See
[9]. Wiener [22, p.156-7] noted the significance of this issue:

How then does the beehive act in unison, and at that in
a very variable, adapted, organized unison? Obviously,
the secret is in the intercommunication of its members
. . . [and] can vary greatly in complexity . . .

As noted earlier, the difficulty of pinning down the concept of
SOB seems to have forced even the most logical and insightful re-
searchers to resort to forms of circular reasoning and definitions.
Serra et al. describes the concept of self-organization as “highly
organized behaviour even in the absence of a pre-ordained design.”
[20, p.1] (what is ‘organized’?) and as “unexpected and complex
behaviours [ ].” [20, p.2] (what is ‘unexpected and complex’?).
Even the likes of Ilya Prigogine1 and Norbert Wiener have been
subject to this conundrum. Prigogine et al. [18, p.181-186] cites
the spontaneous emergence of structures in chemical reactions as
examples of self-organization. Weiner [22, Ch.16] used it to de-
scribe brain waves. Thus, despite a lot of study and descriptions in
many domains of inquiry (e.g., [12]), self-organization remains, at
best, a rather nebulous concept leaving us with many unanswered

1Prigogine won the Nobel Prize in 1977 for his work on the ther-
modynamics of non-equilibrium systems.
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questions: Is SOB that which leads to “structures” or patterns? If
so, what distinguishes them from random effects?

Finding answers to these questions and problems is quite daunt-
ing and perhaps ultimately elusive. Yet, by attempting to highlight
some first principles, we might at least gain additional insight—our
ultimate goal. In considering first principles in the context of SOB
and SI, therefore, it must be borne in mind that the behavior of sys-
tems affected by biological systems (e.g., systems designed using
human intelligence) are all heavily influenced by the forces of evo-
lution. The successful performance of such systems must therefore
incorporate modes of cooperativity and it is this concept and the
related concepts of efficiency and adaptivity that requires mathe-
matical gloss. Therefore, let us attempt to impose some structure
on this amalgam of observations, questions, and ideas in the hopes
that it leads to further insights and ideas.

3. THE META-FORMALISM TRIAD
Developing this mathematical structure requires a set of basic

principles. Fleischer [9] describes three basic principles by drawing
analogies to the theoretical development of the simulated annealing
(SA) algorithm and puts them in the context of SI. This section
provides a brief description of this triad.

Briefly, the theoretical development of SA required application
of a set of first principles based on the laws of nature and its relevant
implications. These first principles were based on the theory of
thermodynamics. The relevant implications of this theory is that
systems tend toward a state of maximum entropy. Maximizing the
entropy then leads to the definition of the Boltzmann distribution,
a central component in SA [2].

The second component of this triad is a dynamical framework.
In SA, this was based on the theory of Markov chains and related
to the Boltzmann distribution. This led to the famous Metropo-
lis Acceptance Criteria. Finally, the third component, the prob-
lem framework, was based on combinatorial optimization problems
(COPs) and permitted the application of the first two components
onto test-bed problems for experimentation and analysis. These
three components comprise the entire edifice on which SA theory
and practice is based (see e.g., [2]).

This foundational triad can be appropriately recast within the
context of SI, SOB, and complex systems and imposes a useful
and helpful structure for conducting research on evolving and co-
operative systems. Each component of this triad, 1) the relevant
laws of nature and their significant implications; 2) a dynamical
framework, and 3) an associated problem framework are described
in greater detail below.

3.1 The Relevant Laws of Nature
The most important part of this foundational triad is the set of

first principles. For SI, these first principles are based on the laws
of evolution and natural selection [9]. Certainly, the laws of evolu-
tion and natural selection apply to insect swarms. Because we want
to take a more general approach, we do not limit this component to
laws of nature per se. Stating it in this way however provides a use-
ful way to characterize how systems evolve over time and conveys
the notion that the synthesis developed here is based on some over-
riding or governing principle and helps to frame the issue of what
its relevant and significant implications are. In effect, stating that
the laws of evolution apply implicitly says that over time, systems
become more efficient, adaptable and useful either due to human
design and experience, or through the sometimes unkind pressures
of natural selection. Indeed, for complex systems, this efficient be-
havior may exist on many scales.

This notion of efficiency seems reasonable on its face, but is

also based on observations of social insects and how they adapt
to changing environmental conditions (see [11]). Certainly, the ef-
ficient allocation and use of resources provides a distinct survival
value to any species. It also seems reasonable that effective meth-
ods for determining efficient modes of behavior can be quite valu-
able for enhancing the survival value of a species (or managing a
complex system) because it enables adaptive behavior. Efficient
operations are then possible when changes occur in the environ-
ment.

In general, systems have several operating modalities and goals
and the notion of efficiency must therefore often be related to multi-
ple measures of performance or goals. These multiple performance
measures thus require some tradeoffs based on utility functions.
One could, of course, refer to many theories of economics which
explicitly entail many measures of performance in an environment
with many interacting entities. In such complex systems, tradeoffs
must often be made on fairly short time scales as “individual” enti-
ties attempt to navigate through a changing environment imposed,
in part, by other similar (or possibly different) entities (or systems)
each of which may compete for resources. Thus, to be truly “effi-
cient”, an entity must make efficient tradeoffs in goals or objectives
and do so consistently if it is to survive the rigors of natural selec-
tion.

So what mathematical concepts can we use here to characterize
efficiency and adaptability? In SA theory, we have the Boltzmann
distribution. What is its counterpart in SI, SOB, or complex, evolv-
ing systems? It turns out that the notions of efficiency and adapt-
ability do have a mathematical formalism based on the concept of
Pareto optimality best described in the context of MOPs.

Efficiency and Pareto Optimality: Complex systems, whether
man-made or natural, are either designed or evolved to perform
in certain ways. The measures of performance in these systems
can often be mathematically modeled using objective functions—
functions of decision variables that produce a scalar to be either
minimized or maximized. Such optimization problems are ubiqui-
tous and these objective functions essentially provide a mechanism
for ranking the desirability of a decision—the higher (or lower) the
value of the objective function, the better. The highest (lowest)
value of the objective function corresponds to the best decision (or
set of decisions if there are multiple optima). Such problems are
often very difficult to solve.

Complex systems are often made even more difficult to solve be-
cause they may involve several objectives that must all be consid-
ered in assessing system performance. In such cases, what is best
is not necessarily the same as what is optimal. Best refers to a sin-
gle solution that maximizes utility from among a set of the efficient
solutions. Optimal refers to the entire set of efficient solutions that
together dominate all other feasible solutions. In single objective
optimization problems, these two notions always coincide while in
MOPs they can be distinct. See [10].

In systems with multiple objectives, these objectives are often
in conflict with one another where one objective function value
must be “traded off” for another. In MOPs, therefore, optimal so-
lutions are characterized by a set of Pareto optima or an efficient
frontier—a set of points in objective function space often referred
to as a tradeoff curve. In these problems, each set of decision vari-
ables (operational parameters) produces several objective function
values, i.e., a single point in objective function space correspond-
ing to a single Pareto optimum. Such a point has the property that
when it is compared to any other feasible point in objective func-
tion space, at least one objective function value is superior to the
corresponding objective function value of this other feasible point.
Pareto optima therefore constitute a special subset of points that
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Figure 1: The Pareto Optimal Frontier

collectively dominate all other feasible points in objective function
space. The Pareto optima necessarily have the property that im-
proving one objective function value is possible only by incurring
some cost in worsening another objective function value—hence
the term trade off curve. Figure 1 illustrates Pareto optima with
open O’s in a system with two objective function values f1 and f2

that are minimized. Note that these points dominate (are superior
to) the other points in this 2-dimensional objective function space.
It is among this set of points that operational decisions must be
restricted if operational efficiency is to be maintained.

The Measure of Pareto Optima: Recently, Zitzler [24] and Fleis-
cher [10] described a new way of mapping a set of Pareto optima or
set of non-dominated2 points to a scalar. For a given set of bounds3

the size of this space is its Lebesgue measure or hypervolume and is
illustrated by the shaded region in Figure 2 depicting two minimiz-
ing objective functions f1 and f2 with the indicated upper bounds.
The black dots constitute a non-dominated set of points.

Figure 2: The hypervolume of Pareto optima.

The Lebesgue measure quantifies efficiency in a useful way: the
Lebesque measure of a set of non-dominated points attains its max-
imum value if and only if those points are Pareto optima [10].
Consequently, changes in the overall efficiency can be reflected in
changes in the Lebesgue measure and can be depicted as a receding
or expanding Pareto optimal frontier.4 Thus, the evolution of coop-
erativity can be effected by using evolutionary pressures to increase
some appropriately defined Lebesgue measure.

2A set of points is non-dominated when a comparison between any
two points in the set indicate a tradeoff in objective function values.
3The Lebesgue measure of a non-dominated set achieves its maxi-
mum value when the non-dominated points are Pareto optima. This
measure will be different with different bounds. Nevertheless, once
the bounds are set, points that maximize the Lebesgue measure will
correspond to Pareto optima. Changing the bounds thus changes
which Pareto optima maximize the Lebesgue measure.
4Note that although two sets of non-dominated points may produce
two different Lebesgue measures (we assume both measures use
the same set of bounds), it does not necessarily follow that one is
better than the other. As noted earlier, the notion of best (or better)
entails aspects of utility which we do not consider here. On the
other hand, if one set of points dominates another set, it necessarily
has a larger Lebesgue measure.

Fleischer [9] utilized the implications of this framework com-
ponent and the concept of Pareto optimality to articulate a mathe-
matically oriented definition of SOB and is restated (and slightly
modified) here:

DEFINITION: Self-organized behavior in a complex
system involving multiple performance measures is a
sequence of system states corresponding to movement
along a Pareto optimal frontier.

Of course this is only one of many possible definitions for SOB or
emergent behavior (see [5]) and is not meant to be applied in all sit-
uations described as “self-organized”. For example, this definition
may not be appropriate for simple dissipative systems or various
properties of fluid dynamics. This definition does however seem
appropriate for

• systems involving several measures of performance that,
• depend on decisions, i.e., some actor is involved, and
• to which natural selection pressures are applied.

Using this definition of SOB, we now consider the issues involved
in “moving along” this Pareto optimal frontier, how it is computed,
and how it can be used to effect cooperativity.

3.2 The Dynamical Framework
The second component of the triad, the dynamical framework, is

based on a new concept—Scale Invariant Pareto Optimality (SIPO)
that pertains to the tendency of evolving systems towards increased
efficiency and cooperative behaviors on many scales.5

The value of articulating this component of the meta–formalism
is that it forces us to ask useful questions: How should the sys-
tem change, i.e., what is the basis of the evolutionary dynamics?
Because the first principle relates to efficiency and adaptability,
the dynamics must be associated with Pareto optimality. This in
turn implies the need for some memory and learning mechanisms.
The dynamical framework thus imposes the following four require-
ments:

1. a mechanism for changing the behavior of a system
2. a form of memory.
3. a learning mechanism
4. a basis for natural selection

Before delving into these details, let us discuss the third component
of the meta-formalism—the problem framework.

3.3 The Problem Framework
The problem framework provides a concrete way for implement-

ing the first two frameworks and helps to define specific problems
and questions, narrow the issues and focus research and develop-
ment efforts. Perhaps the most general and flexible (hence useful)
of the many possible problem frameworks are CAs where each cell
or component is an FSM. CAs provide a basis for modeling sys-
tem interactions hence captures important aspects of cooperativity.
We can also control the neighborhood structure to suit our research
needs. FSMs provide flexibility for controlling the levels of com-
plexity of the system as each cell can be defined with any num-
ber of states depending on what is necessary and convenient. We
also have flexibility in defining various (even arbitrary) measures
of performance. Together, CAs and FSMs provide the substrate on
which to define and implement the first two elements of the meta-
formalism.
5This includes the graceful degradation of performance in complex
systems. See [9].
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It is worth mentioning another approach similar to the CA con-
cept. One could instead use a network paradigm or graph where
each FSM is connected to an arbitrary set of neighbors that can then
interact. On the other hand, CAs have a more regular, or uniform,
structure which might prove useful in studying various phenom-
ena. Keeping these considerations in mind, we can now start to fill
in the blanks and further develop this meta-formalism and provide
guidelines on how it can be implemented for actual experimenta-
tion, research and development.

To summarize, the first component of the meta–formalism sug-
gests that evolved systems should behave in a manner consistent
with Pareto optimality and do so on many scales. The second
component suggests that efficient/adaptable behavior corresponds
to movement along Pareto optimal frontiers associated with several
system scales. The third component provides the basis for imple-
menting these ideas using the general concepts of FSMs and CAs.
The next step is to engineer methods which embody these ideas
and satisfy their requirements. Before we do this however, some
discussion on modeling cooperativity is helpful.

4. MODELING COOPERATIVITY
Efficient Tradeoffs of Efficiency: What is cooperation? The term
“give and take” comes to mind: sometimes entities must sacrifice
a short-term benefit for a longer term benefit. Or, it may suggest
sacrifice where an entity gives up, perhaps permanently, any hope
for improving its “performance” so that a larger number of other
entities can. As noted in [9], soldiers must often make the ultimate
sacrifice for the good of their countries. It seems plain that cooper-
ation is a form of SOB, but how can it be modeled mathematically?

Structures and SOB: This type of tradeoff suggests that an entity,
or in this case an FSM, must have some notion of how to modify
its behavior for the good of its neighboring FSMs. It further im-
plies the possibility that certain states of neighboring FSMs may be
‘incompatible’—a certain Pareto optimum in one FSM may pre-
clude a particular Pareto optimum in its neighbor. This incompati-
bility is analogous to the concept of frustration in Ising spin glass
models (see e.g., [4]). Such a phenomenon suggests the possibility
that only certain combinations of Pareto optima among neighbor-
ing entities may coexist at any given time. If this is true, it may
explain the notion of fluctuations as Prigogine calls them [18] and
the formation of structures as an attribute of SOB as the effects
of frustration propagate through a CA. It seems reasonable there-
fore that the patterns of system states spatially and temporally are
governed by initial conditions, various state incompatibilities due
to frustration, and the nature of efficient tradeoffs in the midst of
these state incompatibilities.

The ‘Graceful’ Degradation of Performance: The foregoing
discussion also suggests a general and mathematical way of de-
scribing the “graceful degradation” of system performance. Such
graceful degradation has been seen as an important component in
the management of large scale systems such as the Internet [1,
Ch.5]. Rather than suffering catastrophic changes, it may be possi-
ble for system efficiency to be degraded gradually. This is because
system efficiency can be measured using the Lebesgue measure de-
scribed earlier, hence the possibility that the measures of efficiency
for different scales can be traded off efficiently. This idea of the effi-
cient tradeoffs of efficiency measures provides a quantifiable guide
of how best to achieve this sacrifice of efficiency on one scale for
improved efficiency on another scale.

These types of issues can arise in a variety of contexts: if state
incompatibilities exist among neighboring entities, then it is possi-
ble that some of the entities cannot operate at their highest levels

of efficiency, hence there are tradeoffs of efficiency between in-
dividual entities and its neighboring entities. Since the Lebesgue
measure is a quantification of efficiency for entire regimes of be-
havior, a mathematical way to characterize this type of tradeoff is
to use the Lebesgue measures associated with individual entities
and with entire neighborhoods of entities to define a Pareto optimal
frontier based on them. In effect, the Lebesgue measures associated
with Pareto optima on different scales themselves become objective
functions for a higher-level Pareto optimal frontier. To the author’s
knowledge, this type of tradeoff has never been characterized or
described in this way, hence provides a novel way to characterize
system interactions, behavior and efficiency on different scales and
constitutes the basis of the SIPO concept. Figure 3 depicts such a
tradeoff curve where the Pareto optimal frontier is the bolded part
of the curve. Note that improvement on one scale comes at the cost
of worsening the Lebesgue measure on the other scale. See [9].
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Figure 3: A tradeoff curve of different measures of efficiency.

In Figure 3, the x−axis is an estimate of a particular entity’s ef-
ficiency measure and the y−axis is an estimate of a more global
efficiency measure. The black dot corresponds to the entity’s oper-
ating point under current environmental conditions and suggests a
possible tradeoff of efficiency where the system’s efficiency can be
improved at the cost of decreasing the entity’s efficiency.

Obviously, if enough subsystems are degraded, it becomes in-
creasingly difficult to adequately compensate for their degradation
and the entire system’s efficiency measure will be reduced. The
point is that this degradation can be influenced or even controlled
by actions that minimize the decrease in the Lebesgue measure.
Thus, because the system degrades efficiently, the system can be
said to degrade gracefully. How this occurs poses an interesting
and, needless to say, difficult problem. The next section describes
ways to study this and related problems.

5. IMPLEMENTING THE FORMALISM

5.1 Defining Measures of Performance
Within the FSM/CA framework, virtually any suitable and con-

venient objective functions can be defined as well as the output
functions used to “communicate” with an entity’s neighbors. For
each entity i in a CA, let xi be a vector of state variables, yi =
g(xi,yNi) be some output function for entity i where yNi is the
vector of output values of i’s neighbors, and fij(xi,yNi) the j th (j =
1, 2, . . . , n) objective function of entity i. These output functions
effectively allow entities to communicate and connect them to their
neighbors thereby capturing the “community” phenomenon and the
attendant interdependence. The function g can also be defined to
incorporate aspects of game theory [19]. Thus, each objective and
output function is dependent on the entity’s state variables and the
output function values of its neighbors as befits a CA.
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Figure 4: A transformation function that corresponds to a permuta-
tion of a list of Pareto optima.

5.2 Transformation Functions
Implementing the dynamical framework requires a mechanism

for transforming the current state and environmental information
into a decision, i.e., the state at the next time step. A transformation
function for each entity must therefore be defined. The system is
designed so that this function which controls an entity’s behavior
evolves over time to increase the value of the high-level Lebesgue
measure (see below). As such it is the component that ultimately
leads to cooperativity and other forms of SOB. Because selection
pressures are applied to the transformation functions of each entity,
there needs to be a way of relating them among all these entities,
otherwise the evolutionary process would be meaningless. Some
common ground for comparisons and selection must be identified.
This issue is addressed in Section 5.3. For now, we examine what
a transformation function looks like.

For an entity to maintain efficient system states, it must be capa-
ble of moving from one Pareto optima to another using a transfor-
mation function where for a given entity i, this function in genera-
tion h can be denoted by

x
[k+1]
i = T[h](x

[k]
i | y[k]

Ni
) (1)

where the xi are associated with a Pareto optimum at time index
k. This function outputs state variables associated with a Pareto
optimum at the next time step.

The function in (1) requires an archive of the Pareto optima
(fi1, fi2, . . . , fin) and their associated values xi, and yNi . It is
essentially a database of these values where each entry can be des-
ignated with a position number in the archive. The transformation
function thus constitutes a mapping of one position number to an-
other position number, hence is a permutation. For a system with
a fixed number of operating points p, this mapping can be based
on a simple table lookup method and depicted as a bi-partite graph.
Figure 4 depicts the permutation(
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4

)
.

Changes in (1) thus correspond to a new permutation.
The simplicity of the transformation function (1) leads to several

problems and possibilities worth mentioning. One obvious prob-
lem is that the inputs depend on the yNi , but as we shall see, en-
tries in the archive are based only on the objective function values.
Thus, an input in (1) may not actually exist in the archive. Given an
entity’s dependence on yNi , simply moving from one Pareto opti-
mum to another is also unlikely. How can possible dependence on
yNi and maintenance on the Pareto optimal frontier be reconciled?
This depends on how the meta-formalism is implemented and many
possibilities are conceivable. It is worth mentioning a few of them.

One approach would be to use the archive as a training set for a
feed-forward neural network where all of the inputs values in (1)
are matched to the corresponding outputs. Another scheme would
be to determine the entry in the archive that is closest to the input
values using some metric. That entry’s position number would then
be used in conjunction with the permutation to yield the output
values. Other schemes are no doubt possible.

The next section describes more details of this archive and ad-
dress issues related to learning, how these transformation functions
will be used, and the necessity mentioned earlier of establishing
some way to relate the transformation functions among the entities.

5.3 Memory and Learning
For the transformation function to work properly some method

for learning and remembering the efficient solutions is needed. This
requirement can be satisfied by a search algorithm that stores the
efficient solutions as they are discovered. Knowles et al. [13] re-
cently developed an archiving method based on the Lebesgue mea-
sure that meets these requirements perfectly. Such an archive stores
the necessary information in the following way: During the search
process, non-dominated solutions are added to the archive up to its
maximum storage capacity. Any new points dominating ones al-
ready in the archive replace those they dominate thereby maintain-
ing an upper bound on its size. In this way, the archive continually
filters out undesirable (dominated) solutions and so learns while
the Lebesgue measure of the archive monotonically increases.

To function properly, the archive must work with the transforma-
tion function in some meaningful way. This means some method
for classifying them is needed, which in turn, requires that some or-
der among the transformation functions be imposed. One approach
is to list the points in the archive lexicographically based either
on the vector (fi1, fi2, . . . , fin) or the vector of state variables
xi. Ceteris paribus, every entity’s archive will then have a simi-
lar ordering of their elements yet preserve some essential diversity.
For example, the first entries of two distinct archives would have a
greater likelihood of being close to one another in terms of some
metric than the first and last entries of these archives. Other or-
dering schemes are no doubt possible. Computational experiments
will be required to assess whether this scheme works in terms of
evolving cooperativity. The next section describes how such exper-
iments could be designed.

5.4 Evolving Cooperation
In this section, several approaches for engineering the evolution

of cooperativity are described. These approaches all attempt to in-
crease the Lebesgue measures, i.e., the efficiency, associated with
self-interest and community interest and the Lebesgue measure as-
sociated with the efficient tradeoffs of these interests. This can be
done in a straight-forward manner using the Lebesgue measures
associated with the appropriate scales.

Self-Interest: Note that a single point in objective function space
dominates a certain region of that space which has an associated
Lebesgue measure. Thus, the mth vector of objective function val-
ues in the archive of entity i maps to some scalar:

(fi1, fi2, . . . , fin)m = Fim �→ lim (2)

Also, the entire archive with p entries for entity i maps to a scalar
Li, the Lebesgue measure of the union of the dominated objective
function space of each vector in the archive:

Fi1

...
Fip


 �→ Li
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(see [10] for an algorithm that computes this Lebesgue measure).

Community-Interest: The Lebesgue measure reflecting the effi-
ciency of the community is based on the Lebesgue measures of the
neighbors of entity i. Let LiN represent the Lebesgue measure of
the N th neighbor of i. Each of these measures is now treated as
an objective function value as in (2) which also dominates a region
of this new objective function space and maps to another scalar re-
flecting the efficiency of the neighborhood of i:

{Li1 , Li2 , . . . , LiN } �→ Li

Cooperativity Measure: Finally, the Lebesgue measure of the
space dominated by both self-interest and community interest is
defined:

{Li,Li} �→ Li (3)

and provides a way to measure cooperativity. This Lebesgue mea-
sure thus captures the economic vitality of a subset of FSMs, hence
can be used as a fitness function—entities with higher values of Li

will tend to cooperate more effectively with their neighbors.

Evolving Transformation Functions: Once entities with relatively
high fitness values Li are identified, a genetic algorithmic approach
is needed to evolve these transformation functions. Because trans-
formation functions are essentially permutations, crossover and mu-
tation operators for permutations must be defined. Although per-
mutations are a somewhat strange entity on which to apply these
genetic operators, such operators on permutations do exist and have
been studied over the years. Many of these techniques are designed
to preserve partial orderings in successive generations. See [16]
for an extensive survey. The next section describes some general
approaches for putting all of these elements together to evolve co-
operativity and SOB.

5.5 The Meta-Formalism Process
Several alternative approaches for implementing these ideas are

no doubt possible. Here, three distinct phases to the evolutionary
process are described although many variations are conceivable.
The following is offered to stimulate further research.

Phase 0—Initialization: For each FSM, system states evolve ran-
domly while non-dominated points in objective function space and
the associated values of xi and yi are archived. This phase proba-
bilistically explores the state space and remembers/learns the set of
efficient operating points discovered in the process.

Phase 1—Learning & Training: This phase either creates a ran-
dom transformation function if one does not already exist, or uses
a transformation function developed in Phase 2. In this phase, the
system goes through the fixed number of iterations under the influ-
ence of the transformation function. The archive is updated with
new non-dominated points while lexicographic ordering is main-
tained. This phase can incorporate supervised learning using neural
networks or some metric to determine the input-output mapping as
described in Section 5.2. Lebesgue measures are computed either
at each iteration or at the end of this phase.

Phase 2—Genetic Modification: This phase utilizes various evo-
lutionary paradigms to induce improvement in the transformation
functions. A fitness value for each entity is computed using (3).
Alternatively, the self-interest measure li in (2) or its time aver-
age l̄

[k]
i over the number of iterations can be used in place of Li in

(3) to compute the fitness value Lh
i for generation h. Entities with

relatively high fitness values are then selected out and crossover
and mutation operations applied to their respective transformation

functions. A new generation of transformation functions then re-
places the existing ones. The process then reverts to Phase 1 hence
oscillates between these phases. The test of whether this scheme
works can be measured by the sequence of the average values of
(3) among the entities. This value ought to increase over time al-
though it may not do so monotonically.

6. DISCUSSION
What can we expect to observe from an implementation of this

scheme and what sorts of reasonable conjectures, if any, can be
made? Clearly, an implementation would likely have all the com-
plexity and unpredictability of typical CAs—yet, its very structure,
might lead to some interesting phenomena. One of the more fasci-
nating phenomena to investigate is self-organized criticality (SOC)
[3]. SOC describes the sudden, often dramatic, changes that occur
in complex systems. Many examples involve swarm intelligence,
but this phenomena is also associated with the statistical mechan-
ics of phase transitions. How might SOC be observed and studied
within this meta-formalism? How does it relate to SOB?

Consideration of other paradigms and phenomena such as game
theory, economic theory, and the evolutionary paradigm itself might
help in answering these questions. For instance, one could design
objective function relationships that model some form of compe-
tition: a cell’s objective in maximizing some function could be
inversely related to the outputs of the same function in one of its
neighbors. Add to this dependence of a cell’s “success”, as mea-
sured by objective functions or (2), to the success of its neighbors
and it is very likely that some very complex behaviors might be ob-
served. Conway’s Game of Life CA (see e.g., [17]) displays some
aspects of this in a much simpler system. In more complex systems
with richer sets of possible behaviors, could such competitive and
cooperative features lead to SOB and would it also display SOC?
See e.g., [19, 15].

Consider the possibility of the existence of an “ideal” transfor-
mation function that leads to very advantageous states for a given
cell, but that its long-term success is too impaired by the less than
ideal transformation functions of its neighbors. This ideal transfor-
mation function may then not be able to replicate sufficiently and
ultimately dies off or is mutated. Perhaps this ideal transforma-
tion function can only succeed and propagate if a sufficient num-
ber of its neighbors have a similar transformation function. One
could then imagine that although this proximity of ideal transfor-
mations may have a much smaller probability of occurring, once it
does occur there could then be a cascade of evolution where viable
transformation functions propagate in sufficient numbers and cause
the system to behave in a maximally efficient manner. A threshold
number of these viable transformation functions may thus manifest
itself in a “domino effect” and could be considered a type of SOC.
See also [7, 12] for a discussion relating to ‘punctuated’ evolution.
Perhaps the concept of SOC is fundamentally related to some form
of chain reaction and requires some form of proximity character-
istics for it to occur. This idea might be explored by restricting
crossover operations to involve only neighboring entities.

All of the flexibility in experimenting with this meta-formalism
can be used to explore this and other possibilities. On the other
hand, true understanding of phenomena often requires the simplest
of systems to manifest the phenomena where the essential features
of the phenomena are more observable (again, the domino example
is compelling). The meta-formalism described here could easily
become overly complicated in any implementation and so caution
is advised. It should be borne in mind, that the crux of this meta-
formalism is the use of a metric, as in (3), that directly measures
cooperativity and this value will intimately depend on how the ob-
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jective, output and transformation functions are defined and genet-
ically modified.

7. CONCLUSION
This article described a meta-formalism that can be used to de-

fine formulae and iterative schemes capable of demonstrating the
evolution of cooperativity among a set of interacting systems. Us-
ing notions of Pareto optima and its measure, a mathematically ori-
ented definition of SOB was described. The meta-formalism itself
was based on three foundational components: a set of first prin-
ciples based on the laws of evolution and natural selection. Its
implications naturally led to concepts such as Pareto optimality,
efficiency and adaptability as the basis for the other foundational
components. The second component was the dynamical frame-
work and described measures of performance and efficiency mea-
sures associated with Pareto optima. Transformation functions, an
archiving process to effect memory and learning, and an evolution-
ary process to select out transformation functions associated with a
high-level efficiency measure—one that provides a direct measure
of cooperativity—were also described. The third component was a
problem framework that provided the modeling clay with which to
mold a system of systems together. This employed the concept of
FSMs linked in a CA to provide both simplicity and generality.

This meta-formalism and the ideas in this article will hopefully
provide a basis for organizing ideas, stimulate further research and
development, and help in evolving a greater understanding of com-
plex and self-organizing systems.
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